

TAB 1. Embedded system programming paradigms

	simple processors	
-	simple devices	
Bare metal ¹	few operations	
-	you already know this	

¹https://www.embeddedrelated.com/thread/5762/rtos-vs-bare-metal ²https://en.wikipedia.org/wiki/Real-time_operating_system ³https://en.wikipedia.org/wiki/Linux_on_embedded_systems

Kizito NKURIKIYEYEZU, Ph.D.

TAB 1. Embedded system programming paradigms

Bare metal ¹	 simple processors 	
	simple devices	
	few operations	
	you already know this	
	 devices with multitasking 	
RTOS ²	strict deadlines	
	 powerful processors 	C C C
	complex devices	

¹ https://www.embeddedrelated.com/thread/5762/rtos-vs-bare-metal ² https://en.wikipedia.org/wiki/Real-time_operating_system ³ https://en.wikipedia.org/wiki/Linux_on_embedded_systems

Kizito NKURIKIYEYEZU, Ph.D.

TAB 1. Embedded system programming paradigms

Bare metal ¹	 simple processors 	
	simple devices	
	few operations	COMM C
	you already know this	
RTOS ² -	 devices with multitasking 	
	strict deadlines	(CARO)
	powerful processors	C C C
	complex devices	
	 very complex application 	R
	file-systems,networking	
	Pretty UI	

¹ https://www.embeddedrelated.com/thread/5762/rtos-vs-bare-metal ² https://en.wikipedia.org/wiki/Real-time_operating_system ³ https://en.wikipedia.org/wiki/Linux_on_embedded_systems

Kizito NKURIKIYEYEZU, Ph.D.

FIG 1. A pacemaker is a small, battery-operated device. This device senses when your heart is beating irregularly or too slowly. It sends a signal to your heart that makes your heart beat at the correct pace. In general, a hear pacemaker contains a small micro-controller and electrodes that connect the heart tot the generator. The electrodes carry the electrical message to the heart. A defective pacemaker can cause more harm than good

¹https://www.paulsonandnace.com/defective-pacemaker-can-cause-harm-good/

Kizito NKURIKIYEYEZU, Ph.D.

Why this course?

October 26, 2022 2 / 8

How can we prove that an unmanned aerial vehicle (UAV) will brake quickly enough if it encounters an object on its path?

FIG 2. General Atomics MQ-9 Reaper

The MQ-9 is the first hunter-killer UAV designed for ong-endurance, high-altitude surveillance. It is capable of remotely controlled or autonomous flight operations and is primarily for the United States Air Force (USAF).

¹https://en.wikipedia.org/wiki/General_Atomics_MQ-9_Reaper

²What is the implication of drone warfare? The following link debates their ethical use

³Autonomous military drones: no longer science fiction. What is the implication?

⁴Two challenges in embedded systems design—predictability and robustness

Kizito NKURIKIYEYEZU, Ph.D.

- How can we prove that an unmanned aerial vehicle (UAV) will brake quickly enough if it encounters an object on its path?
- The possibility of life-or-death decisions being taken by an UAV not under the direct control of humans needs to be taken seriously

FIG 2. General Atomics MQ-9 Reaper

The MQ-9 is the first hunter-killer UAV designed for ong-endurance, high-altitude surveillance. It is capable of remotely controlled or autonomous flight operations and is primarily for the United States Air Force (USAF).

¹https://en.wikipedia.org/wiki/General_Atomics_MQ-9_Reaper

²What is the implication of drone warfare? The following link debates their ethical use

³Autonomous military drones: no longer science fiction. What is the implication?

⁴Two challenges in embedded systems design—predictability and robustness

Kizito NKURIKIYEYEZU, Ph.D.

- How can we prove that an unmanned aerial vehicle (UAV) will brake quickly enough if it encounters an object on its path?
- The possibility of life-or-death decisions being taken by an UAV not under the direct control of humans needs to be taken seriously
- In short, how do you know that a UAV military drone will work as expected?

FIG 2. General Atomics MQ-9 Reaper

The MQ-9 is the first hunter-killer UAV designed for ong-endurance, high-altitude surveillance. It is capable of remotely controlled or autonomous flight operations and is primarily for the United States Air Force (USAF).

¹https://en.wikipedia.org/wiki/General_Atomics_MQ-9_Reaper ²What is the implication of drone warfare? The following link debates their ethical use ³Autonomous military drones: no longer science fiction. What is the implication? ⁴Two challenges in embedded systems design—predictability and robustness Kizito NKURIKIYEYEZU, Ph.D. Why this course?

FIG 3. Embedded controllers found in a modern vehicle

¹Should we be worried that our cars are controlled by software?

²How Software Is Fating the Car—The trend toward self-driving and electric vehicles will add Kizito NKURIKIYEYEZU, Ph.D. Why this course? October 26, 2022 4 / 8

FIG 4. Traffic lights—How do you guarantee that cars won't clash into each other?

FIG 5. implantable medical devices—Fatal consequences if they fail to work as intended

FIG 6. Artist's conception of NASA's Mars Exploration Rover on Mars. It's mission almost failed due priority inversion.

FIG 7. Instrumentation of the Mars Rover

²http://www.cs.cornell.edu/courses/cs614/1999sp/papers/pathfinder.html

Kizito NKURIKIYEYEZU, Ph.D.

It's a fundamental course on embedded system⁴⁵

⁴Please read this book for an extensive list of what you need to know as an embedded engineer Edwards, L. (2014). So You Wanna Be an Embedded Engineer: The Guide to Embedded Engineering, from Consultancy to the Corporate Ladder. Newnes.

⁵Steve Branam also gives succinct summary of what you need to know as an embedded engineer at this blog https://www.embeddedrelated.com/showarticle/1324.php

- It's a fundamental course on embedded system⁴⁵
- In this course, we explore scheduling questions like these

⁴Please read this book for an extensive list of what you need to know as an embedded engineer Edwards, L. (2014). So You Wanna Be an Embedded Engineer: The Guide to Embedded Engineering, from Consultancy to the Corporate Ladder. Newnes.

⁵Steve Branam also gives succinct summary of what you need to know as an embedded engineer at this blog https://www.embeddedrelated.com/showarticle/1324.php

- It's a fundamental course on embedded system⁴⁵
- In this course, we explore scheduling questions like these
- The course teaches provable guarantees of timing constraints for applications including autonomous vehicles.

⁴Please read this book for an extensive list of what you need to know as an embedded engineer Edwards, L. (2014). So You Wanna Be an Embedded Engineer: The Guide to Embedded Engineering, from Consultancy to the Corporate Ladder. Newnes.

⁵Steve Branam also gives succinct summary of what you need to know as an embedded engineer at this blog https://www.embeddedrelated.com/showarticle/1324.php

- It's a fundamental course on embedded system⁴⁵
- In this course, we explore scheduling questions like these
- The course teaches provable guarantees of timing constraints for applications including autonomous vehicles.
- The course will explore timing constraints, both when programs have static priorities and when priorities can change over time.

⁴Please read this book for an extensive list of what you need to know as an embedded engineer Edwards, L. (2014). So You Wanna Be an Embedded Engineer: The Guide to Embedded Engineering, from Consultancy to the Corporate Ladder. Newnes.

⁵Steve Branam also gives succinct summary of what you need to know as an embedded engineer at this blog https://www.embeddedrelated.com/showarticle/1324.php

- It's a fundamental course on embedded system⁴⁵
- In this course, we explore scheduling questions like these
- The course teaches provable guarantees of timing constraints for applications including autonomous vehicles.
- The course will explore timing constraints, both when programs have static priorities and when priorities can change over time.
- The course will also explore both theoretical and practical challenges introduced by modern embedded systems with multiple processors.

⁴Please read this book for an extensive list of what you need to know as an embedded engineer Edwards, L. (2014). So You Wanna Be an Embedded Engineer: The Guide to Embedded Engineering, from Consultancy to the Corporate Ladder. Newnes.

⁵Steve Branam also gives succinct summary of what you need to know as an embedded engineer at this blog https://www.embeddedrelated.com/showarticle/1324.php

- It's a fundamental course on embedded system⁴⁵
- In this course, we explore scheduling questions like these
- The course teaches provable guarantees of timing constraints for applications including autonomous vehicles.
- The course will explore timing constraints, both when programs have static priorities and when priorities can change over time.
- The course will also explore both theoretical and practical challenges introduced by modern embedded systems with multiple processors.
- The course will be challenging—but it will serve as a cornerstone for your future career in embedded systems.

⁴Please read this book for an extensive list of what you need to know as an embedded engineer Edwards, L. (2014). So You Wanna Be an Embedded Engineer: The Guide to Embedded Engineering, from Consultancy to the Corporate Ladder. Newnes.

⁵Steve Branam also gives succinct summary of what you need to know as an embedded engineer at this blog https://www.embeddedrelated.com/showarticle/1324.php

The end